Making mistakes and owning them: How I submitted corrections to published papers and (currently) live to tell the tale

 

838-02493432

by Dr. Lauren Robinson

It’s the nightmare scenario: you look back at an old bit of code and realize you’ve made a mistake and, to make matters worse, the paper has already been published. This year I lived that nightmare scenario. I had shared my code only to discover that a variable that should have been reverse scored (which boils down to multiplying the number by -1), wasn’t. It was a minor oversight that I’d made as a 1st year PhD student learning new statistics, I hadn’t caught the mistake until now, and, worse still, the code had been used in two papers I wrote simultaneously. I considered changing my name and hiding but as I had a postdoc and my mother claims to like me, I figured it was better to keep my current identity.

‘…the right decisions don’t come without risk….’

Reaching out to the senior author we knew there was only one solution: We had to redo the statistics and submit corrections. As an early career researcher, I was panicked. What if the results were drastically different, was a retraction (possibly two) in my future? Fear aside, a mistake was made, we had to own it, and if we were going to believe in scientific integrity then we had to show ours. It’s been my experience that the most difficult decisions, the ones that I’m truly afraid to make – those are the decisions I know to be right. But the right decisions don’t come without risk and I can’t pretend that I wasn’t, and continue to be, worried that not everyone would see this as a minor mistake. Science is competitive and the feeling of having to be flawless, particularly at this phase of my career, is a weight. As a woman in science I already have to fight to be taken seriously, to be seen as competent, and I had committed a sin, I had made an honest mistake that had been published, twice. Before I could find out the results of my mistake on my career, I had to find out their impact on my papers.

‘As a woman in science I already have to fight to be taken seriously, to be seen as competent…’

I somehow survived three painful hours while I waited to finish work at my postdoc and could get back to where I kept the study data. Upon sitting at my desk (liquid courage in hand) I redid the stats, anxious to find the results. Now look, I’m no slouch with numbers, I know what multiplying by -1 does to them, but panic overrode sense in that moment and I needed to see to believe. First paper: Flipped the direction of effect on a non-significant variable that remained that way. Okay, fairly minor, just requires that the journal update the tables. Second paper: Again, the only thing that changed was the direction of effect, though this variable had been and still was significant, means we had to adjust the numbers, a line in the abstract, and three sentences in the results. Not great, but as variables go it hadn’t even rated being mentioned in the discussion.

Okay, okay, okay (deep breaths, bit more whisky), this could be so much worse I told myself. I screwed up but hey, everyone makes mistakes, I was learning something new, I should’ve have caught it earlier, but it was caught now. Onto the next step, making the corrections, contacting coauthors, and letting the journals know. Time to really live by our ideals. But first! Another moment of panic while I wondered if I had made the same mistake in my two newest papers. Opening code, reading through, and…no, I hadn’t made the mistake again. Somewhere along the way I had clearly learned how to do these statistics correctly, I just hadn’t caught it while I was working on these two papers and had copy-pasted the code across them. Good news, I am in fact capable of doing things correctly.

‘I had lived my nightmare and it felt, as least in this moment…completely survivable…’

Writing the email to my coauthors wasn’t something that I was particularly looking forward to. “Oh hey fellow researchers that I respect and admire, I screwed up and am going to let the journals and the world know. PS, please don’t think less of me and hate me. Okay, thanks.” While that’s not what I wrote, that’s what it felt like. An admission of imperfection, shame, guilt, a desire to live under a rock. However, I’ve been blessed with caring and understanding collaborators, each of whom was extremely supportive. Next, I sent an email to the journals explaining the mistake and requesting corrections be published. Each journal was understanding and helped us write and publish corrections and that was it, it was done. I had lived my nightmare and it felt, as least in this moment…completely survivable. I had imagined anxiety and panic and battling my own shame and guilt. This…this was a feeling of stillness that I was not prepared for.

Prior to contacting the journals and writing this blog, I asked myself how much this would hurt my career. Would a small mistake cost me my reputation, respect, and future in the science I’d already sacrificed so much for? Would writing this blog and openly speaking to the fact that I had made a mistake only further the potential damage to career and respect? Would a single mistake, done at the beginning of my PhD and not since repeated, mean that others didn’t trust my science and statistics, not want to work with me? Would I trust my own skills, and more importantly, myself, again? There was so much uncertainty and so little information available on this experience, yet mistakes like this must happen more than we think, they just go unspoken.

‘…genuine mistakes? We have to make those acceptable to acknowledge, correct, even retract, and speak about, to learn and move on from.’

This, this is the crux of a problem in science, there are unknown consequences of acknowledging and speaking openly about our mistakes and, by failing to do so, we only further increase the chance that mistakes go uncorrected. Let’s hold those that perform purposeful scientific misconduct accountable, but genuine mistakes? We have to make those acceptable to acknowledge, correct, even retract, and speak about, to learn and move on from them. Those who don’t learn from their mistakes? Well, they may be doomed to face the consequences. As a note, if we’re going to move towards openness and transparency in science then we need to be particularly careful that those in underrepresented groups aren’t unfairly punished or scrutinized for admitting and speaking about mistakes as these groups are already under a microscope and face unique and frustrating challenges. We cannot allow openness and transparency to be used as one more excuse for someone to tell us no, not if science is to diversify and progress.

‘What kind of person and scientist do I want to be?’

Of all the questions I asked myself, deciding to write this post came down to one: What kind of person and scientist do I want to be? As an animal welfare scientist, I have long believed in being transparent and open in science, I realized that’s who I am as a person as well. Living by my ideals meant not only correcting my mistake but also talking openly and frankly about it. These choices, challenging as they may have been, are the right ones. To err is human and luckily for me I have divine friends, mentors, and colleagues that forgive me my mistakes and sins. I believe that we should all be so lucky and that mistakes should be openly and transparently discussed. For now, I live to science another day and look forward to the challenges, mistakes (which I intend to catch prior to publication), and learning that come with it.

For those interested in working with me (imperfections and all) when my current postdoc ends this January, feel free to get in touch via ResearchGate (https://www.researchgate.net/profile/Lauren_Robinson7) or Twitter (https://twitter.com/Laurenmrobin).

Links to published corrections:

http://psycnet.apa.org/buy/2016-39633-001

https://www.sciencedirect.com/science/article/pii/S016815911830193X

Read about Lauren’s fascinating research (with lots of monkey photos!) into animal welfare and animal behaviour here.

Advertisements

Pride aside: Beg, borrow and fully realise the struggle of chasing the academic dream

by Dr. Zarah Pattison, University of Stirling.

Aaaaaaand…SEND.

When you have worked your arse off, gotten three degrees and work experience; sending (begging) emails to make people aware you are looking (desperately) for a job can hurt an already Imposter Syndrome riddled ego. Oh, and let’s not forget my Twitter CV post frenzy either…ahem.

I love where I work at the University of Stirling. Five months before I finished my PhD, I had secured a postdoc position with another group in the same department. This was something I never thought I could achieve. I worked furiously trying to finish the PhD whilst setting up the experimental design for my postdoc research. I handed in my thesis and went straight into my postdoc field- and lab-work for the next year. Once my data were collected, I had 6 months left and instead of smashing through the analyses and churning out a paper or two, I knew I had to start job hunting. Being in the position of not earning a salary was financially and mentally not an option for me.

I knew I wanted to stay in Scotland, preferably Stirling. So I wrote fellowship applications, grant applications, postdoc and lectureship applications – you name it. I also applied for a job outside of academia, as well as postdoc positions abroad. However, I didn’t want to move. I have recently gotten married and my now husband, who was previously supportive of a nomadic life, now says; ‘No, I am not moving unless you get a contract longer than a couple of years’. He has fallen in love with Scotland and has a job which enables him to support his daughter. But I can’t shift all the blame on him. I don’t want to move either. I enjoy where I am too.

ZP4

Zarah at her doctoral graduation

So herein lies the academic conundrums:

  • Don’t settle down, it will kill your academic career as it reduces your options.
  • To be a good scientist you must move institution.
  • Two bodies are more difficult to move than one.
  • This list could go on… (For example, I am not even going into to the whole ‘I am getting older what about having a kid’ situation).

This is how I am dealing with the academic conundrums occurring at this stage of my career:

  • ‘Don’t settle down, it will kill your academic career as it reduces your options.’

We want to stay here for now, so we are. A sacrifice which means accepting a non-academic position.

  • ‘To be a good scientist you must move institution.’

To be a good scientist is to gain various perspectives on your work and collaborate. So this is what I am doing. By collaborating and writing grant applications with current mentors and new ones at different institutions.

  • ‘Two bodies are more difficult to move than one.’

For now he keeps his job, we buy a house and focus on the present (like me trying to clear my years of study debt).

  • ‘This list could go on… (For example, I am not even going into the whole “I am getting older what about having a kid” situation).’

This is not my focus, but definitely on my mind.

Never underestimate how time consuming and draining the process of job hunting is. It became my full time job. This ultimately meant falling behind on my current postdoc work and triggered all-consuming guilt. However, I am lucky to have a supportive mentoring team. They looked at my applications, listened to my practice presentations for interviews and gave me the freedom to develop and chase my career.

I did not manage, as yet, to secure a long term academic post. I have accepted a post outside of academia, as well as being recently successful with two grant applications. Which is in itself another conundrum:

  • Give up a full time job for a short term postdoc contract?

Not possible for me in my current situation, but I am attempting to solve this another way. Wish me luck!

 

For more on imposter syndrome, read Eve Kearney’s excellent piece: ‘Dr Kearney Or: How I Learned to Stop Worrying and Love Imposter Syndrome’

Toppling the Pillars of Cancer Cell Biology

by Caitrin Crudden, PhD candidate at the Karolinka Institutet, Stockholm, Sweden.

Caitrin in the lab

Caitrin in the lab

Picture an expansive galaxy in your head. A vast space with thousands of twinkling dots.
As seconds pass, connections flash from dot to dot – fast enough to disappear before you can even focus on one – generating an intricate, pulsating web.

I’m not a cosmologist. I’m a cancer cell biologist, and I study subcellular signalling. You probably already know that cancer is a disease of uncontrolled cell growth. But cancer cells have not gained an alien skill in order to do so; they use the exact same growth signalling pathways that every other one of your cells uses. In a cancer cell, relatively small tweaks occur in normal signalling pathways, which render them dysfunctional, often hyperactive. But the galaxy-like expansive and pulsating web of communication imagery goes part way in describing the system we are dealing with. Subcellular signalling is vast and mind-numbingly complicated, and in all of the decades of molecular biology so far, we are still piecing links together with every additional study.

But a galaxy-like network, somewhat like the task, is quite overwhelming and daunting. For simplicity, let’s imagine one signalling pathway in isolation, a bit like a chain of children in the school playground, playing a game of whispers. A message is passed from one child to the next child down the line, but instead of the usual hilarity of miscommunication, our hypothetical game is pretty exact. An un-fun version of playground whispers, if you will. Much like those children in the playground, in a cell, a message is passed from one part of the cell to another by sequential messenger molecules. For example, a message can be sent around the body in the blood in the form of a molecule. This molecular message binds to a receptor that sits on the surface of a cell prised waiting for this exact signal. The binding of the molecular message to this receptor flicks it from off to on. An on receptor turns on a nearby molecule, this on molecule turns the next molecule on, and so on and so forth, until the message is passed to the nucleus. Here, it tells the cell which genes are to be transcribed, in order to build proteins to accomplish a specific cellular task. In cancer, one or more of these signalling pathways stops working correctly because of a genetic mutation in a messenger molecule. To continue the metaphor, basically a child in the middle of chain decides to go a bit rogue.

Cell Signalling

Cell signalling

Let’s take an example. There’s a proliferative signalling pathway called the mitogen activated protein kinase pathway or simply MAPK to its friends. In the middle of it is a molecule called Ras. Normally, this pathway fires a nice concise signal in response to a message from somewhere else in the body, that tells this cell that it needs to grow and divide into two daughter cells. Maybe, for instance, the human overlord has acquired a pesky paper cut and the cells need to grow to close the wound. In that case, the message binds to a receptor on the cell, a growth factor receptor, which communicates to Ras, and Ras turns on to communicate the signal to the next molecule, which passes on to the next, and down and down a chain of messenger molecules into the nucleus, which initiates the steps that need to take place for the cell to divide. In this normal efficient situation, Ras returns to its off state as soon as it has efficiently passed its signal onto the next molecule, and in doing so, ensures a safe and distinct message is given. A successful game of un-fun playground-whispers, and everyone can pat themselves on the back and go about their day.

A common mutational event in cancer is that Ras picks up a genetic mutation that means it becomes stuck in the on position. We call this constitutive activation, which basically just means stuck-in-the-on-position. With Ras constantly on, the signal is continuously fired from it to the next molecule, even in instances when it is inappropriate for the cell to divide. Hence, these cells acquire uncontrolled growth, outgrow their neighbours and can continue to mutate and grow and move and invade and…I think you all know how this story ends.

So the answer seems logistically simple – turn Ras off, right? However, frustratingly Ras turns out to be a pretty much un-druggable molecule. Despite huge effort, the 3D surface of the protein doesn’t have pockets in which a potential drug could bind and correct it. However, efforts have been more successful in drugging its next-in-line messenger molecule, Raf. If, in our hypothetical chain of school children playing whispers, there’s one mischievous kid in the middle adding rubbish in willy-nilly, that didn’t come from anyone before her, the damage is minimized if the next partner in line simply doesn’t pass the nonsense on. Raf inhibitors showed great promise in pre-clinical development, and in clinical trials of metastatic melanoma, a truly horrible aggressive disease. Things started to look up.

Until – Bam! The drugs stop working. In a patient who initially responded well, the disease comes back – and it’s more aggressive then ever. A heart-breaking yet frustratingly common scenario. The cell is a highly dynamic system with a lot of inter-connected pathways that can flip back and forth when needed, and a cancer cell, because of its unstable genome that is prone to mutations, is even more adaptable. You can put a road block in the signal chain – Ras’s whisper-partner keeps quiet, but cunning Ras simply finds another buddy in the playground to blurt rubbish to, aaand we’re back to square one. As useful to our understanding as chain-schemes are, the network-like galaxy, in all of its sobering complexity, is more realistic. You can start to get an idea of the difficulty of treating this disease.

So, what now? Some of my current work, and that of others, is trying to optimize multi-target approaches. If a cell can circumvent the Raf or similar inhibitor road-blocks quite rapidly, we must simultaneously or synchronously take away its back up options, in a highly choreographed bank and forth dance to the death. The idea is that a multi-target network approach, which removes back-door options, minimizes adaptation of cancer cells to inhibitors and hence drug resistance. The hope is that if we design smart enough multi-target approaches, we might just be able to topple the pillars of survival that these cells rely on.

Max Delbrück, a 20th century geneticist wrote;

“Any living cell carries within it the experiences of a billion years experimentation by its ancestors. You cannot expect to explain so wise an old bird in a few simple words.”

Nor can you outsmart it, with simple strategies.

How your brain plans actions with different body parts

Got your hands full? – How the brain plans actions with different body parts

by Phyllis Mania

STEM editor: Francesca Farina

Imagine you’re carrying a laundry basket in your hand, dutifully pursuing your domestic tasks. You open the door with your knee, press the light switch with your elbow, and pick up a lost sock with your foot. Easy, right? Normally, we perform these kinds of goal-directed movements with our hands. Unsurprisingly, hands are also the most widely studied body part, or so-called effector, in research on action planning. We do know a fair bit about how the brain prepares movements with a hand (not to be confused with movement execution). You see something desirable, say, a chocolate bar, and that image goes from your retina to the visual cortex, which is roughly located at the back of your brain. At the same time, an estimate of where your hand is in space is generated in somatosensory cortex, which is located more frontally. Between these two areas sits an area called posterior parietal cortex (PPC), in an ideal position to bring these two pieces of information – the seen location of the chocolate bar and the felt location of your hand – together (for a detailed description of these so-called coordinate transformations see [1]). From here, the movement plan is sent to primary motor cortex, which directly controls movement execution through the spinal cord. What’s interesting about motor cortex is that it is organised like a map of the body, so the muscles that are next to each other on the “outside” are also controlled by neuronal populations that are next to each other on the “inside”. Put simply, there is a small patch of brain for each body part we have, a phenomenon known as the motor homunculus [2].

eeg1

Photo of an EEG, by Gabriele Fischer-Mania

As we all know from everyday experience, it is pretty simple to use a body part other than the hand to perform a purposeful action. But the findings from studies investigating movement planning with different effectors are not clear-cut. Usually, the paradigm used in this kind of research works as follows: The participants look at a centrally presented fixation mark and rest their hand in front of the body midline. Next, a dot indicating the movement goal is presented to the left or right of fixation. The colour of the dot tells the participants, whether they have to use their hand or their eyes to move towards the dot. Only when the fixation mark disappears, the participants are allowed to perform the movement with the desired effector. The delay between the presentation of the goal and the actual movement is important, because muscle activity affects the signal that is measured from the brain (and not in a good way). The subsequent analyses usually focus on this delay period, as the signal emerging throughout is thought to reflect movement preparation. Many studies assessing the activity preceding eye and hand movements have suggested that PPC is organised in an effector-specific manner, with different sub-regions representing different body parts [3]. Other studies report contradicting results, with overlapping activity for hand and eye [4].

eeg2

EEG photo, as before.

But here’s the thing: We cannot stare at a door until it finally opens itself and I imagine picking up that lost piece of laundry with my eye to be rather uncomfortable. Put more scientifically, hands and eyes are functionally different. Whereas we use our hands to interact with the environment, our eyes are a key player in perception. This is why my supervisor came up with the idea to compare hands and feet, as virtually all goal-directed actions we typically perform using our hands can also be performed with our feet (e.g., see http://www.mfpa.uk for mouth and foot painting artists). Surprisingly, it turned out that the portion of PPC that was previously thought to be exclusively dedicated to hand movement planning showed virtually the same fMRI activation during foot movement planning [5]. That is, the brain does not seem to differentiate between the two limbs in PPC. Wait, the brain? Whereas fMRI is useful to show us where in the brain something is happening, it does not tell us much about what exactly is going on in neuronal populations. Here, the high temporal resolution of EEG allows for a more detailed investigation of brain activity. During my PhD, I used EEG to look at hands and feet from different angles (literally – I looked at a lot of feet). One way to quantify possible effects is to analyse the signal in the frequency domain. Different cognitive functions have been associated with power changes in different frequency bands. Based on a study that found eye and hand movement planning to be encoded in different frequencies [6], my project focused on identifying a similar effect for foot movements.

feet_pixabay

Source: Pixabay

This is not as straightforward as it might sound, because there are a number of things that need to be controlled for: To make a comparison between the two limbs as valid as possible, movements should start from a similar position and end at the same spot. And to avoid expectancy effects, movements with both limbs should alternate randomly. As you can imagine, it is quite challenging to find a comfortable position to complete this task (most participants did still talk to me after the experiment, though). Another important thing to keep in mind is the fact that foot movements are somewhat more sluggish than hand movements, owing to physical differences between the limbs. This circumstance can be accounted for by performing different types of movements; some easy, some difficult. When the presented movement goal is rather big, it’s easier to hit than when it’s smaller. Unsurprisingly, movements to easy targets are faster than movements to difficult targets, an effect that has long been known for the hand [7] but had not been shown for the foot yet. Even though this effect is obviously observed during movement execution, it has been shown to already arise during movement planning [8].

So, taking a closer look at actual movements can also tell us a fair bit about the underlying planning processes. In my case, “looking closer” meant recording hand and foot movements using infrared lights, a procedure called motion capture. Basically the same method is used to create the characters in movies like Avatar and the Hobbit, but rather than making fancy films I used the trajectories to extract kinematic measures like velocity and acceleration. Again, it turned out that hands and feet have more in common than it may seem at first sight. And it makes sense – as we evolved from quadrupeds (i.e., mammals walking on all fours) to bipeds (walking on two feet), the neural pathways that used to control locomotion with all fours likely evolved into the system now controlling skilled hand movements [9].

What’s most fascinating to me is the incredible speed and flexibility with which all of this happens. We hardly ever give a thought to the seemingly simple actions we perform every minute (and it’s useful not to, otherwise we’d probably stand rooted to the spot). Our brain is able to take in such a vast amount of information – visually, auditory, somatosensory – filter it effectively and generate motor commands in the range of milliseconds. And we haven’t even found out a fraction of how all of it works. Or to use a famous quote [10]: “If the human brain were so simple that we could understand it, we would be so simple that we couldn’t.”

 [1] Batista, A. (2002). Inner space: Reference frames. Current Biology, 12(11), R380-R383.

[2] Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60(4), 389-443.

[3] Connolly, J. D., Andersen, R. A., & Goodale, M. A. (2003). FMRI evidence for a ‘parietal reach region’ in the human brain. Experimental Brain Research153(2), 140-145.

[4] Beurze, S. M., Lange, F. P. de, Toni, I., & Medendorp, W. P. (2009). Spatial and Effector Processing in the Human Parietofrontal Network for Reaches and Saccades. Journal of Neurophysiology, 101(6), 3053–3062

[5] Heed, T., Beurze, S. M., Toni, I., Röder, B., & Medendorp, W. P. (2011). Functional rather than effector-specific organization of human posterior parietal cortex. The Journal of Neuroscience31(8), 3066-3076.

[6] Van Der Werf, J., Jensen, O., Fries, P., & Medendorp, W. P. (2010). Neuronal synchronization in human posterior parietal cortex during reach planning. Journal of Neuroscience30(4), 1402-1412.

[7] Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of experimental psychology47(6), 381.

[8] Bertucco, M., Cesari, P., & Latash, M. L. (2013). Fitts’ Law in early postural adjustments. Neuroscience231, 61-69.

[9] Georgopoulos, A. P., & Grillner, S. (1989). Visuomotor coordination in reaching and locomotion. Science, 245(4923), 1209–1210.

[10] Pugh, Edward M, quoted in George Pugh (1977). The Biological Origin of Human Values.

 

Space weather – predicting the future

by Aoife McCloskey

Early Weather Prediction

Weather is a topic that humans have been fascinated by for centuries and, dating back to the earliest civilisations ’till the present day, we have been trying to predict it. In the beginning, using the appearance of clouds or observing recurring astronomical events, humans were able to better predict seasonal changes and weather patterns. This was, of course, motivated by reasons of practicality such as agriculture or knowing when the best conditions to travel were, but additionally it stemmed from the innate human desire to develop a better understanding of the world around us.

Weather prediction has come a long way from it’s primordial beginning, and with the exponential growth of technological capabilities in the past century we are now able to model conditions in the Earth’s atmosphere with unprecedented precision. However, until the late 1800’s, we had been blissfully unaware that weather is not confined solely to our planet, but also exists in space.

Weather in Space

Weather, in this context, refers to the changing conditions in the Solar System and can affect not only our planet, but other solar system planets too. But what is the source of this weather in space? The answer is the biggest object in our solar system, the Sun. Our humble, middle-aged star is the reason we are here at all in the first place and has been our reliable source of energy for the past 4.6 billion years.

However, the Sun is not as stable or dependable as we perceive it to be. The Sun is in fact a very dynamic object, made up of extremely high temperature gases (also known as plasma). Just like the Earth, the Sun also generates its own magnetic field, albeit on a much larger scale than our planet. This combination of strong magnetic fields, and the fact that the Sun is not a solid body, leads to the build up of energy and, consequently, energy release. This energy release is what is known as a solar flare, simply put it is an explosion in the atmosphere of the Sun that produces extremely high-energy radiation and spits out particles that can travel at near-light speeds into the surrounding interplanetary space.

The Sun: Friend or Foe?

Sounds dangerous, right? Well yes, if you were an astronaut floating around in space, beyond the protection of the Earth, you would find yourself in a very undesirable position if a solar flare were to happen at the same time. For us here on Earth, the story is a bit different when it comes to being hit with the by-products of a solar flare. As I said earlier, our planet Earth produces its very own magnetic field, similar to that of a bar magnet. For those who chose to study science at secondary school, I’m sure you may recall the lead shavings and magnet experiment. Well, that’s pretty much what our magnetic field looks like, and luckily for us it acts as a protective shield against the high-energy particles that come hurtling our way on a regular basis from the Sun. One of the most well-known phenomena caused by the Sun is actually the Aurora Borealis, i.e., the northern lights (or southern lights depending on the hemisphere of the world you live).

aurora-1

Picture of the Aurora Borealis, taken during Aoife’s trip to Iceland in January 2016.

This phenomenon has been happening for millennia, yet until recent centuries we didn’t really understand why. What we know now is that the aurorae are caused by high-energy particles from the Sun colliding with our magnetic field, spiralling along the field lines and making contact with our atmosphere at both the north and south magnetic poles. While the aurorae are actually a favourable effect of space weather, as they are astonishingly beautiful to watch and photograph, there are unfortunately some negative effects too. These effects here on Earth range from satellite damage (GPS in particular), to radio communication blackout, to the more extreme case of electrical grid failure. Other effects are illustrated in the image below:

My PhD – Space Weather Forecasting

So, how do we predict when there is an event on the Sun that could have negative impacts here on Earth? Science, of course! In particular, in the area of Solar Physics there has been increasing focus on understanding the physical processes that lead to space weather phenomena and trying to find the best methods to predict when something such as a solar flare might occur.

It is well known that one should not directly view the Sun with the naked eye, therefore traditionally the image of the Sun was projected onto pieces of paper. Using this method, one of the first features observed on the Sun were large, dark spots that are now known as sunspots. These fascinated astronomers for quite some time and there is an extensive record of sunspots kept since the early 1800’s. These sunspots were initially traced by hand, on a daily basis, until photographic plates were invented and this practice became redundant. After many decades of recording these spots there appeared to be a pattern emerging, corresponding to a roughly 11-year cycle, where the number of spots would increase to a maximum and gradually decrease again. It was shown that this 11-year cycle was correlated with the level of solar activity, in other words the number of solar flares and how much energy they release can also be seen to follow this pattern.

carrington_sspots

Sunspot drawing by Richard Carrington, 01 September 1859

Leading on from this, it is clear that there exists a relationship between sunspots and solar flares, so logically they are the place to start when trying to forecast. My PhD project focuses on sunspots and how they evolve to produce flares. For a long time, sunspots have been classified according to their appearance. One of the most famous classification schemes was developed by Patrick McIntosh and has been used widely by the community to group sunspots by their size, symmetry and compactness (how closely packed are the spots) [1]. Generally, the biggest, baddest and ugliest groups of sunspots produce the most energetic, and potentially hazardous, flares. Our most recent work has been studying data from past solar cycles (1988-2010) and looking at how the evolution of these sunspot groups relates to the flares they produce [2]. I found that those that increase in size produce more flares than those that decrease in size. This has been something that has been postulated before in the past, and additionally it helps to answer an open question in the community as to whether sunspots produce more flares when they increase in size (grow) or when they decrease in size (decay). Using these results, I am now implementing a new way to predict the likelihood of a sunspot group to produce flares and additionally the magnitude of those flares.

 

Space weather is a topic that is now, more than ever, of great importance to our technology-dependent society. That is not to say that there will definitely be any catastrophic event in the near-future, but it is certainly a potential hazard that needs to be addressed on a global scale. In recent years there has been some significant investment in space weather prediction, with countries such as the UK and the U.S. both establishing dedicated space weather forecasting services. Here in Ireland, our research group at Trinity College has been working on improving the understanding of and prediction of space weather for the past ten years. I hope, in the near future, space weather forecasting will reach the same level of importance as the daily weather forecast, but for now – watch this space.

  1. McIntosh, Patrick S (1990), ‘The Classification of Sunspots’,  Solar Physics, p.251-267.
  2. McCloskey, Aoife (2016), ‘Flaring Rates and the Evolution of Sunspot Group McIntosh Classifications’, Solar Physics, p.1711-1738.

Detecting Parkinson’s Disease with your mobile phone

DETECTING PARKINSON’S DISEASE BEFORE SYMPTOMS ARISE

by Reham Badaway, in collaboration with Dr. Max Little.

So, what if I told you that in your pocket right now, you have a device that may be able to detect for the symptoms of a brain disease called Parkinson’s, much earlier than doctors themselves can detect for the disease? I’ll give you a minute to empty out the contents of your pockets. Have you guessed what it is? It’s your smartphone! Not only can your trusty smartphone keep you in touch with family and friends, or help you look busy at a party that you know no-one at, it can also detect for the very early symptoms of a debilitating disease. One more reason to love your smartphone!

What is Parkinson’s disease?

So, what is Parkinson’s disease (PD)? PD is a brain disease which significantly restricts movement. Some of the symptoms of PD include slowness of movement, trembling of the hands and legs, the resistance of the muscles to movement, and loss of balance. All of these movement problems (symptoms) are extremely debilitating and affect the quality of life for those diagnosed with the disease. Unfortunately, it is only in the late stages of the disease, i.e. when the symptoms of the disease are extremely apparent, that doctors can confidently detect PD. There is currently no cure for the disease. Detecting the disease early on can help us find a cure, or find medicines that aim to slow down disease progression. Thus, methods that can detect PD before doctors themselves can detect for the disease, i.e. in the early stages of the disease, are pivotal.

Smartphone sensing

So, how can we go about detecting the disease early on in a non-invasive, cheap and easily accessible manner? Well, we believe that smartphones are the solution. Smartphones come equipped with a large variety of sensors to enhance your experience with your smartphone (Fig 1). Over the last few years, abnormal characteristics in the walking pattern of individuals with PD have been successfully detected using a smartphone sensor known as an accelerometer. Accelerometers can detect movement with high precision at very low cost, making them perfect for wide-scale application.

reham-1

Fig 1: Sensors, satellites and radio frequency in Smartphones

Detecting Parkinson’s disease before symptoms arise

Interestingly, subtle movement problems have been reported in individuals with a high risk of developing PD using sensors similar to those found in smartphones, specifically when given a difficult activity to do such as walking while counting backwards. Individuals at risk of developing the disease are individuals who are expected to develop the disease in the later stages of their life due to say a genetic mutation, but have not yet developed the key symptoms required for PD diagnosis. The presence of subtle movement problems in individuals with a high risk of developing PD indicates that the symptoms of PD exist in the early stages of the disease progression, just subtly. Unfortunately, these subtle movement problems are so subtle that individuals at risk of developing PD, as well as doctors, cannot detect them – so we must go looking for them. It is crucial that we can screen individuals for these subtle movement problems if we are to detect the disease in the early stages. The ability of smartphone sensors to detect the subtle movement problems in the early stages of PD has not yet been investigated. Using smartphones as a screening tool for detecting PD early on will mean a more widely accessible and cost-effective screening method.

Our solution to the problem

We aim to distinguish individuals at risk of developing PD from risk-free individuals by analysing their walking pattern measured using a smartphone accelerometer.

How does it work?

So, how would it work? Users download a smartphone app, in which they are instructed to place their smartphone in their pocket and walk in a straight line for 30 seconds. During these 30 seconds, a smartphone accelerometer records the user’s walking pattern (Fig 2).

reham-2

Fig 2: Smartphone records user walking

The data collected from the accelerometer is then downloaded on to a computer so we can examine the presence of subtle movement problems in an individual’s walking pattern. However, to ensure that the subtle movement problems that we observe in an individual’s walking pattern is due to PD, we aim to simulate the user’s walking pattern via modelling the underlying mechanisms that occur in the brain during PD. If the simulated walking pattern matches the walking pattern collected from the user’s smartphone (Fig 3), we can look back at our model of the basal ganglia (BG)- an area in the brain often associated with PD – to see if it is predictive of PD.

 

reham-3

 

If it is predictive of PD, and we observe subtle movement problems in the user’s walking pattern, we can classify an individual as being at risk of developing PD. Thus, an individual’s health status will be based on a plausible link between their physical and biological characteristics. In cases in which the biological and physical evidence do not stack up, for example when we observe subtle movement problems in an individual’s walking pattern but the information drawn from the BG is not indicating PD, we can dismiss the results in order to prevent a misdiagnosis. A misdiagnosis can have a significant impact on an individual’s health and psychology. Thus, it is pivotal that the methods that we build allow us to identify scenarios in which the model is not capable of accurately predicting an individual’s health status, a problem which a lot of current techniques in the field lack.

To simulate the user’s walking pattern, we aim to mathematically model the BG and use it as input into another mathematical model of the mechanics of human walking. The BG model consists of many variables to make it work. To find the values for the different variables of the BG model such that it simulates the user’s walking pattern, we will use a statistical technique known as Approximate Bayesian Computation (ABC). ABC works by running many simulations of the BG model until it simulates a walking pattern that is a close match to the user’s walking pattern.

Ultimately our approach aims to provide insight into an individual’s brain deterioration through their walking pattern, measured using smartphone accelerometers, in order to know how their health is changing.

Benefits

As well as identifying those at risk of developing PD from healthy individuals, our approach provides the following benefits:

  • Providing insight into how the disease affects movement both before and after diagnosis.
  • Identifying disease severity in order to decide on the right dosage of medication for patients.
  • Tracking the effect of drugs on symptom severity for PD patients and those at risk.

Application

Apple recently launched ResearchKit, which is a collection of smartphone applications that aims to monitor an individual’s health. Companies such as Apple are realising the potential of smartphones to screen for diseases. The ability to monitor patients long-term, in a non-invasive manner, through smartphones is promising, and can provide a more accurate picture of an individual’s health.

Advances in smartphone sensing are likely to have a substantial impact in many areas of our lives. However, how far can we go with monitoring people without jeopardizing their privacy? How do we prevent the leakage of sensitive information collected from millions of people? The growing evolution of sensor-enabled smartphones presents innovative opportunities for mobile sensing research, but it comes with many challenges that need to be addressed.

Science and the City: An interview with Laurie Winkless

Laurie Winkless is the writer of the recently published book ‘Science and the City’. Science and the City has already received fantastic reviews, with the book described as ‘fascinating, lucid and entertaining’, and ‘a wonderful source of fascinating information’. With a background in science research, Laurie now works in science communication (follow her on Twitter here). We met Laurie before the Irish launch of her book at the Science Gallery in Dublin at the end of August (The Science Gallery sold out of copies of Science and the City mere minutes after the launch ended!). Laurie was really kind and gave us a half-hour of her time during what has been a very busy month since her book was published. Read on to find out more about her book, her new-found love of London Underground tunnels, mealworms, jiggly atoms, the Mars Curiosity Rover, women in science,  gendered toys, and more!

Tom Lawson

Laurie and her book in one of Laurie’s beloved rail tunnels in London! Photo: Tom Lawson

Science and the City

Women Are Boring: Congratulations on the launch of the book! It’s getting a great reception! What is your favourite fact in the book?

Laurie Winkless: One thing I hadn’t realised before I started writing the book was that I am obsessed by tunnels! I get on the London Underground (the tube) pretty much every day, and I don’t tend to really think about it, but when I started hanging out with tunnel engineers I developed a real love and affection for tunnels. Somewhere deep inside me, there’s a train nerd! That is my favourite part of the ‘today’ science. As for the ‘tomorrow’ science, I’m excited about research around trying to reduce landfills by letting mealworms eat the plastic waste. This seems to be completely fine for the mealworms, and it gets rid of our non-biodegradable waste! I also spoke to an architect in Colombia who is using waste plastic to build houses. He melts down the plastic and turns it into what are almost lego blocks that clip together. The reuse of plastic is really interesting; we’re so silly with our use of plastic – it takes so long to biodegrade.

WAB: What inspired you to write the book?

LW: It’s been a combination of living in London, and my research background. I’ve lived in London for eleven years now and I think you get a bit obsessed with the city – even if you’re complaining about it, you’re still talking about it! Getting from A to B is a big thing for everyone in London, and that’s where my love of transport came from. My research background is in material science, which tends to be quite a practical, hands-on research area and is very applied to the real world. I kept coming across new technologies, building materials, battery technologies, the use of nanotechnology in food packaging, for example, and I thought ‘you know what? Maybe I can help people understand how cities work today, and also do some future-gazing’.

Thermoelectric energy harvesting

WAB: You’ve had a really cool career – you have a BSC in Physics with Astrophysics from Trinity College Dublin, an MSc in Space Science from University College London, you worked as a researcher at the UK’s National Physical Laboratory for seven years, and you work in science communication. Your pet topic is thermoelectric energy harvesting – tell us a bit about that.

LW: Thermoelectric materials are solid materials, with no moving parts, but they can transform heat into electricity. They can do it because they use these two separate properties of materials that overlap. Think of a hot cup of tea in a cold cup – eventually the cup will get warm and the tea will cool down, so the temperature equalises. With thermoelectric materials, if you can keep that temperature difference – keeping the hot end hot and the cold end cold – what you end up doing is you give energy to the atoms inside the material – which is what heat does all the time. Whether you realise it or not, we live in a universe of jiggling atoms. The higher the temperature is, the more atoms jiggle. That’s basically how we measure temperature – it’s how jiggly atoms are. So, an atom will only ever stop moving at absolute zero, which we can’t really reach. When you’re giving out hot and cold you’re getting all this heat energy; the atoms are jiggling like crazy! But in thermoelectric materials, that also spits out electrons, and a stream of electrons is electricity. If you strap loads of these thermoelectric materials together – for example a square of 64, 120, or 500 of these blocks of thermoelectric materials –  even though each one is only producing tiny amounts of electricity, you turn the waste heat into electricity.

WAB: What was your own research in this area on?

LW: My research was on the car industry in particular. It looked at how we can capture all of that waste heat in car exhausts, because car exhaust temperatures can be almost 500 degrees Celsius – that is energy that is not helping to move the car forward. It is wasting fuel. In fact, only about a third of the energy in fuel actually moves our car. Almost all of the rest is thrown away as heat. We were trying to design devices made with thermoelectric materials that we could strap on to car exhausts. Then you’d have the car exhaust hot, the air outside a bit cooler, and harness that temperature difference to have electricity being produced. We could then use that to do other things in the car, like run the radio or some of the electronics, so that fuel doesn’t need to be used for those things.

mars-curiousity

The Mars Curiosity Rover, which is powered by thermoelectric materials. You can follow the Rover on Twitter here! Photo: NASA

WAB: Amazing! What else can thermoelectric materials be used for?

LW: There are lots of other ways you can use thermoelectric materials. The Mars Curiosity Rover is powered by a thermoelectric generator. It has a tiny piece of a plutonium on the inside. Because plutonium is radioactive, it naturally decays and produces heat, and then there’s all these fins around it so the outside is much cooler, and that powers the entire Rover! They’ve been using thermoelectric materials in the space industry for a long time – we’re just catching up on Earth now!

WAB: What do you think will be the next big application of thermoelectric materials?

LW: One thing that people are really interested in is power plants. Most electricity plants produce heat. A lot of them will burn fuel, usually coal or gas, which heats up an enormous tank of water. That tank of water turn to steam, the steam turns a turbine, and the turbine produces electricity. So actually, a generation of electricity is all about heat. There are lots of researchers who are now asking ‘can we capture some of the heat that we’re producing to make power plants more efficient?’. We want to move away from fossil fuels as rapidly as possible, but this is a good stop-gap in between: making fossil fuels a bit more efficient until we get to the point at which people realise the value of renewables.

Science – the natural option!

WAB: What inspired you to go into science?

LW: I’m quite a curious person. I always have been, and I always wanted to study science – I can’t remember when I first thought ‘I want to be a scientist.’ I like taking things apart, and trying to put them back together again – I used to do that and have bits left over and think ‘oh no, I haven’t done a good job!’ I’ve always enjoyed hands-on, practical work. I like using my hands and questioning the everyday, so science was a natural option for me!

WAB: Tell us about your career path, how did you go from working in a lab to science communication?

LW: My career path has felt more like random leaps around! I did science communication alongside my research, and I was always visiting school, fairs and festivals to talk to the public about science. I decided to take a break from the lab to try and develop communication skills and see if I was any good, and I got the book deal out of that! I really enjoy science communication, and I think that helps. You give more of yourself to something when you enjoy it. People engage with you more. I wanted the book to be authentically myself, because as a scientist, when you’re writing papers, you are often editing your personality out – and that’s an important thing, it has to be neutral. But when I’m not writing papers, I can show a bit more of my personality. I was very nervous about doing that, to be honest. I think it was easier to be logical and very neutral, and I was very anxious about writing the way I talk because I felt it was too informal. It’s scary!

WAB: It is scary! We were very nervous when we launched Women Are Boring, both about putting ourselves out there and wondering whether we’d be taken seriously.

LW: Exactly! You feel like there’s a nakedness, don’t you?

WAB: Its something you’re not used to really doing when you’re in an academic environment.

LW: Definitely. And I think, for sure, not everyone will enjoy it. But the book helped me get braver at being myself. One of the nicest compliments I’ve had about the book has been that it sounds like I’m sitting beside you on the sofa as you read the book. That’s a hugely positive and flattering thing for me. That was the hardest thing to do.

Women in STEM and the ‘leaky pipeline’

dsc_6253_no-glasses_

WAB: What has your experience as a woman in science been like?

LW: I have to say, I’ve had very few negative experiences as a woman in science, and those negative experiences have almost never included my colleagues. I think a lot of my colleagues were completely gender-blind! I never felt treated any differently. The only time I did feel treated oddly was by ‘outsiders’, for want of a better word. For example, I had a situation in the lab once where we had a contractor in to install a high-voltage line for a piece of equipment that I had designed. My male colleague was in the lab with me, but it wasn’t his research project. The contractor just kept speaking to my male colleague – and my colleague was really embarrassed by this! It wasn’t his project, it wasn’t his thing. Eventually, my colleague said to the contractor ‘I really don’t know why you’re asking me this – she’s the boss.’ The contractor looked around at me and was shocked by this! Ordinarily I would be quite patient with things like that, but he got me on a bad day, and I said ‘if you could start speaking to my face, that would be great. I’d appreciate that.’ I then told him what we needed, when we needed it done by, and asked ‘do you think you can do it by this time? Because if you can’t, I can get someone else’. He was taken aback, but I shouldn’t have had to lower myself to that. But as I said, there have been so few moments like that, so experiences like that have really stood out. I’ve been lucky – others have been less lucky than I have.

WAB: What about the issue of keeping women in science? We know there’s a dearth of women in science once we get to a certain level in many areas.

LW: That is a big challenge. We’ve got a leaky pipeline. Like me, for example – I graduated with a STEM degree, I worked in research, and now I’ve stepped sideways from research into communication. But that decision wasn’t to do with me thinking that I couldn’t develop as a scientist – I just wanted to try this, to see if I was any good at it. However, many other women have left science careers at a similar time to me, or later, so we get to the point where we have very few female physics professors, for example. I think part of that is to do with how we can treat people as equally as possible. In an ideal world, things would be a meritocracy, but they so rarely are. That a bigger problem in STEM.

WAB: Absolutely. We attended the L’Oréal – UNESCO Women in Science awards in London in June, and one of the things we found really interesting was that many of the nominees, and those who were awarded fellowships, felt that an important thing about that funding is that it is flexible – they could use it towards childcare. Without that, they might have had to cut back on lab hours, for example. What do you think of that?

LW: In some research areas, a year out of research can be seen as career suicide. If you are a woman, and decide you want to have a child – which is a totally personal choice – you’re accepting the fact that you’re going to be a year out of the publications cycle, a year out of the grants cycle. That puts you back two or three years. You’re constantly on the back foot. We definitely need to be flexible around that kind of issue. But for those woman who don’t want to have children, there is also a problem that isn’t related to childcare. I don’t think its as simple as just being more flexible. I think the whole culture needs to change – which it is, slowly, but it needs to change faster!

let-toys-be-toys

Let Toys Be Toys!

WAB: What do you think we can do to encourage more women to go into STEM? Do you think we need to start encouraging girls quite early – is it too late by the time they’re going into university?

LW: I believe so. I volunteer for an organisation called ‘Let Toys Be Toys’, which I followed on Twitter for a long time before getting involved with them. The idea of the campaign is to stop the artificial gendering of toys. Why do we need pink aisles for girls, and blue for boys? Why can’t boys play with prams? Why do some girls think they’re weird if they play with garages? Its so silly. However different individuals are, those differences are not necessarily along gender lines – society projects much of it. By the time that children are six or seven years old, they already have independent thought. They already have their own ideas about things. If we’ve been telling them for the previous seven years that girls should play this way and boys should play that way, that will naturally influence their own view of themselves. I think the choices we make in our own homes with our children as just as important as the teachers and mentors they’re surrounded by in school and the wider educational world. I was never made to feel weird for my choice of toy. I was equally happy to play with a drill and to learn how to use hand tools as I was to play with My Little Ponies! Neither was ever questioned in any way. I felt confident enough to follow the things I enjoyed doing, rather than the things I felt I should be doing. I hope to have kids in the future, and that is something I’ll want to try really hard to pass on. I know it gave me the confidence to never question whether I could be a scientist. There was never a doubt in my mind that I could do that! I have my family to thank for a lot of that.

Inspirational women in science

WAB: Do you have any female scientist role models? Is there anyone who you think, if you were a young girl or a woman who is interested in science, would be really good to look at for inspiration? Apart from yourself, of course!

LW: I feel very privileged in that two of the endorsers on the back of my book are female physicists. One is Jocelyn Bell Burnell, who is originally from Northern Ireland. She’s an astrophysics professors, and she also discovered pulsars, and quite famously didn’t get the Nobel prize for it. She is a legend! To have her read my book and write a really positive comment about it was a huge, amazing moment – I almost cried, I was so excited! She is someone I’ve always respected. She has sometimes been presented as a victim, but she doesn’t see herself that way at all. She’s also been the President of the Institute of Physics, and has done lots of incredible stuff during her career, she’s written remarkable papers, and she’s also a thoroughly decent human being!

Another would be Athene Donald, also a professor of physics. She writes a lot about gender and about being a woman in physics, in a way that I really admire. She talks about the fact that barriers exist, but she’s not weighed down by them. I think that’s a great lesson for a young female scientist – to know that its okay to talk about those barriers, and we should talk about them. I felt so lucky to have her write a quote for the book, it’s really amazing!

There’s also an engineer called Linda Miller, who works on the London Crossrail project. I’ve been hanging out a bit with people working on that project for the past while. Linda is SO cool – as I said, she works on the Crossrail project so is rebuilding the Thames tunnel, which is very exciting. Before that, she was a civil engineer rebuilding certain sections of the Space Launch Complex at Cape Canaveral in Florida, and prior to that she was a helicopter pilot in the U.S. Air Force! She’s had two incredible careers. She’s a brilliant communicator and a huge supporter of young women in engineering.

WAB: Are there any other science writers you recommend? We know you have further reading mentioned in your book, too.

LW: A writer I love is Mary Roach. She writes funny, popular science – I recommend everyone read Bonk, which is about the science of sex! Her and her husband had sex in an MRI machine as part of her research for the book, for example. She’s a legend! I love her too because she’s not a scientist but she takes science very seriously, and equally, she’s a brilliant storyteller. So she does that popular science interface really well. She’s very funny and very approachable, and I feel like we’re laughing together over a pint when I read her books. I love that. I’d love to aspire to that sort of work.

‘Look up!’

WAB: Back to your own book – what would you like the lasting result of the book to be? Would you like there to be something big that people take away from it?

LW: I really wanted the book to be a primer on how cities work. I went for breadth rather than depth, with enough detail so that people can get their teeth into it. My hope would be that this will be the kickstart for a lot of people to start thinking about science in a different way. That would be my ultimate dream – that it makes people think ‘I live in a city, and now I know how traffic lights work, where my water comes from, where my faeces go when I flush the loo! I’ve got a better understanding of the world around me, and now I’ll read the book she recommended at the back of her own book.’ I want it to be an entry point, to help people look at the world about differently and to realise that science and engineering has built everything around us. That would be an absolute dream! If I met someone in a few years who said ‘I read your book and that led me to do this, this and this’, I would cry! I’d be delighted! It’s a first book, and I saw first because I really want to write another one! I have an idea, but its very early stages. I’ve loved writing this book, as a project and as a process, and I hope my enthusiasm comes across.

WAB: Any final words to people as they walk around their cities?

LW: Look up! Look up when you look around your city and think about what you see. And also be a little bit more cynical about ridiculous reports about red wine both killing you and curing cancer! I hope the book makes people a tiny bit more scientific in their approach.

satc-laurie

Science and the City is published by Bloomsbury (ISBN9781472913227). You can buy it here from Amazon, or here from Bloomsbury. Go buy it for yourself, and for anyone you know with the tiniest interest in science. You never know who might be inspired, and who could be the next Jocelyn Bell Burnell or Laurie Winkless! 

L’Oreal-UNESCO For Women in Science Awards

By: Grace McDermott, Co-Founder of Women Are Boring.

The Awards:

Last week, Women Are Boring had the honour of attending the L’Oreal-UNESCO Women in Science Awards. We had the chance to meet and learn about some of the women carrying out ground-breaking scientific research work in Ireland and the UK.

Approximately 30% of researchers in the world are women*, a statistic which is notoriously lower for women in the Sciences, Technology, Engineering and Math (STEM). Women comprise  a mere 15% of the UK STEM workforce, and to this day only 3% of all Nobel prizes in the sciences have been awarded women. As such, it is no surprise that a recent study showed that some 23% of current female science students in the UK “won’t” or “aren’t sure” whether they will pursue a career in science.

The L’Oreal Women in Science Programme “recognizes the achievements and contributions of exceptional females across the globe, by awarding promising scientists with Fellowships to help further their research.” Founded eighteen years ago, on the premise that ‘the world needs science and science needs women’ over 2000 women from across the globe have been recognised  and received funding to further their research. 

Despite an uphill battle for female STEM researchers across the globe, this year’s awards saw a record number of applications, a feat which proves that female scientists are not going away anytime soon. Out of 400 applications, 40 were longlisted and 8 academics made it to the final nomination list, a selection that L’Oreal’s Scientific Director, Steve Shiel called “ impossibly difficult”. The 8  nominated candidates included female mathematicians, chemists, paleo-biologists, nuclear physicists and the list goes on. In the end, five fellowships were awarded. 

There were two things about the awards that really stood out as newsworthy. Firstly, it was the importance of the research the nominees presented, and the simultaneous significance of presenting such work to audiences who would have otherwise never engaged with it. Secondly, it was the urgent need for a reexamination of what the research community and its supporters, consider valid research costs.

FWIS-home-slider-june-2016-001

All of these women were impressive in their own right, taking on major issues that range from curing diseases, to perfecting wastewater treatments, or challenging accepted conceptions about how star clusters form. Shiel stated

“It’s hard to compare the work of paleobiologists to a medicinal scientist’s work but one thing was evident about all of the winners, and it was that they each had passion. They each had a palpable passion you could feel for what they did, but also this sense of curiosity and discovery.”

The importance of communication: 

Like any award ceremony, there was no shortage of deserving candidates, many of whom we intend to feature in the upcoming months, but one of the projects that stood out for us was Reham Bedawy, a short-listed PhD nominee who was working to support the early detection of Parkinson’s via a mobile phone app. If helping to diagnose life-threatening illness wasn’t enough, she was also able to clearly explain the operationalisation of her work and a seemingly complex disease to two social-science researchers (i.e. us!) who wouldn’t know the right end of a beaker. Her work is inarguably significant, regardless of whether or not a non-expert audience could understand it, but as a result of her interesting and translatable presentation, at least two new researchers who may have otherwise been completely unaware of Parkinson’s research, are now engaged and eager to learn more (follow Reham on Twitter here).

As a media researcher, I was surprised to find how much in common I had with a mathematician. As a large portion of my work focuses on the role of social media in revolutionary movements, I could draw parallels with some of the techno-focused aspects of her methodology. She made me consider how I may better leverage mobile apps for my own work, and above all she inspired me. Her presentation, like so many of the researchers’ presentations, exemplified the significance of not only individual female academics, but the power and influence of the collective. A room full of intelligent, motivated and successful women is something that is seldom seen and far less celebrated. As an aspiring academic, the presence and recognition of these accomplished women helped reignite my own confidence, and motivation to carry on with my work.

It made me think about what the world might look like if these women were splashed across our news headlines, Twitter feeds, or history books?

We need to redefine “direct research” costs:

Aside from inspiration, the awards led to a realization: supporting female academic achievement requires a redefinition of “direct research costs”. What we found particularly noteworthy about the awards was the fact that the winners were allowed to dictate the way in which there awards would be spent, sometimes in ways which are seemingly unconventional in the research community. Many of the past laureates spoke about the importance of using the awards to help facilitate childcare and family relocation to areas or institutions, which were crucial to the development of their work. Moreover, several nominees were pregnant, or brought their young children with them to the awards.

While all funding aimed at supporting equality in research is important, the seemingly non-direct costs of research careers are sometimes the most expensive and difficult to articulate. As such, the importance of funding opportunities which give female academics the power to control the use of their grants presents an equalizing potential that traditional research grants do not. The testimonies of an overwhelming number of past laureates attested to this.

Often, when we speak about female academic achievement the topic of motherhood is ignored. As the notion of motherhood so often consumes, and even stifles the narrative of women in the workplace, I often find myself intentionally discussing the achievements of female academics, or female professionals as an entirely separate entity from their roles as mothers or caretakers.  But these awards brought to the fore the importance of recognizing and funding female academics not only via direct research grants, but also by way of flexible and family-centric support. A recent article in the New York Times upheld this, finding that even seemingly gender-neutral family-friendly policies in many academic institutions tend to favor male academics.

These testimonies leave many open-ended questions, but highlight the need for a continued conversation on the meaning of gender equality and the importance of building female equity in the research space.

What is clear is that female academics experience a different professional reality than their male-counterparts. The awards, and each of the nominated women exemplified the importance of advocacy, not only in the context of each of our individual research work, but also in terms of our collective experiences.